Design of an unmanned ground vehicle, bearcat III, theory and practice
نویسندگان
چکیده
The purpose of this paper is to describe the design and implementation of an unmanned ground vehicle, called the Bearcat III, named after the University of Cincinnati mascot. The Bearcat III is an electric powered, three-wheeled vehicle that was designed for the Intelligent Ground Vehicle Competition and has been tested in the contest for 5 years. The dynamic model, control system, and design of the sensory systems are described. For the autonomous challenge line following, obstacle detection and pothole avoidance are required. Line following is accomplished with a dual camera system and video tracker. Obstacle detection is accomplished with either a rotating ultrasound or laser scanner. Pothole detection is implemented with a video frame grabber. For the navigation challenge waypoint following and obstacle detection are required. The waypoint navigation is implemented with a global positioning system. The Bearcat III has provided an educational test bed for not only the contest requirements but also other studies in developing artificial intelligence algorithms such as adaptive learning, creative control, automatic calibration, and internet-based control. The significance of this effort is in helping engineering and technology students understand the transition from theory to practice. © 2004 Wiley Periodicals, Inc. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
منابع مشابه
Obstacle Avoidance in Unstructrued Environment for the Bearcat
The Center for Robotics Research at University of Cincinnati does extensive research on mobile robot technologies. The center developed Bearcat, an autonomous unmanned vehicle (AUV). The Bearcat can autonomously navigate and avoid only a limited configuration of obstacles in a structured environment. This research provides a solution for the Bearcat to navigate autonomously in an unstructured e...
متن کاملVertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کاملMotion Control Design of the Bearcat II Mobile Robot
Motion control is one of the most critical factors in the design of a robot. The purpose of this paper is to describe the research for applying motion control principles for a mobile robot systems design, which is on going at the University of Cincinnati Robotics Center. The mobile robot was constructed during the 19981999 academic year, and called BEARCAT II. Its design has inherited many feat...
متن کاملAutomatic Calibration and Neural Networks for Robot Guidance
An autonomous robot must be able to sense its environment and react appropriately in a variable environment. The University of Cincinnati Robot team is actively involved in building a small, unmanned, autonomously guided vehicle for the International Ground Robotics Contest organized by Association for Unmanned Vehicle Systems International (AUVSI) each year. The unmanned vehicle is supposed to...
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Field Robotics
دوره 21 شماره
صفحات -
تاریخ انتشار 2004